Functional form
Equation (rule): $\mathbf{y}=\underline{\mathbf{a}} \mathbf{x}+\underline{\mathbf{b}}$
Slope, rate of change
$\mathbf{a}=\frac{y 2-y 1}{x 2-x 1}$
e.: $\mathrm{A}(6,7)$ and $\mathrm{B}(15,25)$
$\mathbf{b}=\mathbf{y}_{\mathbf{1}}-\mathbf{a}\left(\mathbf{x}_{1}\right)$
.e.: $A(6,7)$ and $B(15,25)$

1) $\frac{25-7}{15-6}=\frac{18}{9}=2$

$$
[y=2 x+b]
$$

2) $7=2(6)+b$ $7=12+b$ $7-12=b$ $b=-5$
3) $y=2 x-5$

General form ax + by +c=0
*convert to Functional form by isolating ' y '

$$
\begin{array}{ll}
\text { Ex. } \quad 3 x+2 y-6=0 \\
2 y & =-3 x+6 \quad \text { divide by } 2 \\
y & =-1.5 x+3
\end{array}
$$

COMPARISON METHOD

 finding a point of intersection with 2 functional form equations$$
\begin{aligned}
& y=2 x+7 \\
& y=-x-5
\end{aligned}
$$

$2 x+7=-x-5$
$2 x+x=-5-7$
$3 x=-12$
$x=-12 \div 3=-4$
$y=2(-4)+7=-1$
$(-4,-1)$

Strategies to Find a Missing Point (x,y)

Midpoint

If it's halfway, in the middle, in the center

Point of Division

if fraction (leave a fraction) if ratio (transform into a fraction)
part:part $\rightarrow \frac{\text { part }}{\text { whole }}$
Systems of Linear Relation

- Comparison
- Substitution
- Elimination

To find the intersection or corner where lines meet.

Note: you may have to find the equation of a line

$$
y=a x+b
$$

Find a (slope) and b (y-intercept)

ELIMINATION METHOD
 Finding the value of x and y with 2 general form equations

$3 \times(2 x+5 y=-4)$
$\mathbf{2 \times (3 x - 2 y = 1 3)}$
$6 x+15 y=-12$
$-6 x-4 y=26$
$19 y=-38$

$$
y=-38 \div 19=-2
$$

$2 x+5(-2)=-4$
$2 x=-4+10$
$x=6 \div 2=3$
$(3,-2)$

2

Congruent Triangles
Exactly the same

Angle Side Angle (ASA)

Side Angle Side (SAS)

Similar Triangles
Larger/smaller by scale factor k
Side Side Side (SSS)

$$
\frac{A}{a}=\frac{B}{b}=\frac{C}{c}=\mathbf{k}
$$

Recall: angles add up to 180° !

Side Angle Side (SAS)

Parallel lines: have the same slope (a)
Find the equation parallel to $y=2 x+8$
And goes through the point $(5,25)$

1) Find a: $2 \rightarrow 2$ (same slope)
2) Find $b: 25=2(5)+b$

$$
25=10+b
$$

$$
25-10=b \rightarrow b=15
$$

3) Write the rule: $y=2 x+15$

Perpendicular lines: negative reciprocal slopes - flip the fraction change the sign Find the equation perpendicular to $y=3 x+5$ And goes through the point (9, 15)

1) Find $a: 3 \rightarrow-1 / 3$
2) Find $\mathrm{b}: 15=-1 / 3(9)+\mathrm{b}$

$$
\begin{aligned}
& 15=-3+b \\
& 15+3=b \rightarrow b=18
\end{aligned}
$$

3) Write the rule $y=-1 / 3(x)+18$

Coincident Lines: SAME slope \& b-value Distinct Lines: DIFFERENT slope \& b-value

Substitution Method

Finding the solution or point of intersection when One equation has x or y isolated
$y=4 x+5$
$3 x+2 y=43$
$3 x+2(4 x+5)=43$
$3 x+8 x+10=43$
$11 x+10=43$
$11 x=43-10$
$11 x=33 \div 11$
$x=3$
$y=4(3)+5$
$y=12+5=17$
Solution Set $(3,17)$

MISSING MEASURES IN TRIANGLES
Similar triangles: Draw two triangles, set up ratio and cross multiply
$\frac{A B}{D E}=\frac{A C}{D C}$
$\frac{10}{8}=\frac{A C}{12}$

Metric relations in a right triangle
$a^{2}=y^{*} c$
$b^{2}=x^{*} c$
$h^{2}=y^{*} x$
$\mathrm{a}^{*} \mathrm{~b}=\mathrm{h}^{*} \mathrm{c}$

Don't forget Pythagoras! $a^{2}+b^{2}=c^{2}$

SINE LAW: for all triangles

\rightarrow Fill in formula, remove extra ratio, cross multiply
remember

- if your unknown is an angle, use $\sin ^{-1}$
- if your angle SHOULD be obtuse (> 90°)...
180° - answer
PROPERTIES of Functions (study of a function)

Domain (All x-values)
How far left, How far right: $]-\infty,+\infty[$ or IR Range (All y-values)
How far down, How far up: [-2,+o[
Intercepts (where the curve touches an axis)

$$
\text { Zeros or x-intercepts }(x, 0) \text { : }
$$

Initial Value or y-intercept ($0, y$): \{2\}
Variation (x-values)
Increasing (going up) : $\quad[3,+\infty[$
Decreasing (going down):]-m,3]

Sign (x-values)

Positive(curve is above x-axis): $]-\infty, 1] \cup[5,+\infty$ [
Negative(curve is below x-axis): [1,5]
Extrema (y-values) \rightarrow if infinite, no extreme
Max = None
$M i n=-2$

TRIGONOMETRY: for RIGHT triangles!

adj

$$
\sin \mathrm{X}=\frac{O}{h}
$$

$$
\cos X=\frac{a}{h}
$$

To determine
measure of angle \mathbf{X}, use inverse function

$$
\tan \mathrm{X}=\frac{o}{a}
$$

$$
\sin ^{-1} \cos ^{-1} \tan ^{-1}
$$

remember

- your calculator must be in DEGree mode - keep 4 decimal places in your ratio

STEP FUNCTION - open circles are not included

Ex. Pay $\$ 3$ for every 2 hours in a parking lot

PERIODIC FUNCTION - repeating pattern / wave

find y . If $\mathrm{f}(-44)$ count to left from end of cycle.
PIECEWISE FUNCTION - mix of different functions

$$
f(x)=\left\{\begin{array}{cc}
x^{2} & x \leq 5 \\
25 & 5<x \leq 10 \\
-2 x+45 & x>10
\end{array}\right.
$$

- Choose interval of x
- Plug given value into equation for the interval
-Solve for missing value

3. Trigonometric (sandwich) formula: use when you know 2 sides and one angle (you might need SINE LAW)

QUADRATIC FUNCTION
(second-degree polynomial function)

$0<\mathrm{a}<1$ wider (a is a fraction or decimal) a>1 thinner

To determine " a ", plug in one point on curve
Ex. Point $(3,27) \rightarrow y=a x^{2}$

$$
\begin{aligned}
27 & =a(3)^{2} \\
27 & =a(9) \text { divide by } 9 \\
3 & =a \rightarrow y=3 \mathbf{x}^{2}
\end{aligned}
$$

**BEDMAS

