Mathematics 306/326

Solids	Lateral Area	Total Area	Volume
Cube	$\mathbf{A_{LAT}} = \mathbf{4s^2}$	$\mathbf{A}_{\mathrm{TOT}} = 6\mathbf{s}^2$	$V = s^3$
Cylinder	A_{LAT} = (circumference of base) * (height) $A_{LAT} = C_b * h$ $A_{LAT} = 2 \pi r h$	$A_{TOT} = A_{LAT} + 2A_b$ $A_{TOT} = 2 \pi r h + 2 \pi r^2$	$V = (area \ of \ base) * (height)$ $V = A_b * h$ $V = \pi r^2 h$
Prism	$A_{LAT} = $ (perimeter of base) * (height) $A_{LAT} = P_b * h$	$\mathbf{A}_{\mathrm{TOT}} = \mathbf{A}_{\mathrm{LAT}} + 2\mathbf{A}_{\mathrm{b}}$	$V = (area of base) * (height)$ $V = A_b * h$
Cone	$A_{LAT} = \underbrace{(circumference \ of \ base) * (slant \ height)}_{2}$ $A_{LAT} = \underbrace{C_b * s}_{2}$ $A_{LAT} = \pi \ r \ s$	$A_{TOT} = A_b + A_{LAT}$ $A_{TOT} = \pi r^2 + \pi r s$	$V = \underbrace{(\text{area of base}) * (\text{height})}_{3}$ $V = \underbrace{\frac{A_b * h}{3}}_{3}$ $V = \underbrace{\frac{\pi r^2 h}{3}}_{3}$
Pyramid	$A_{LAT} = \underbrace{(perimeter \ of \ base) * (slant \ height)}_{2}$ $A_{LAT} = \underbrace{P_{b} * s}_{2}$	$A_{TOT} = A_b + A_{LAT}$ $A_{TOT} = A_b + \underline{P_b * s}$ 2	$V = \underbrace{(\text{area of base}) * (\text{height})}_{3}$ $V = \underbrace{\mathbf{A}_{b} * \mathbf{h}}_{3}$
Sphere	$\mathbf{A}_{\mathrm{LAT}} = \mathbf{A}_{\mathrm{TOT}} = 4 \; \mathbf{\pi} \; \mathbf{r}^2$	$\mathbf{A}_{\mathrm{LAT}} = \mathbf{A}_{\mathrm{TOT}} = 4 \; \mathbf{\pi} \; \mathbf{r}^2$	$V = \frac{4 \pi r^3}{3}$

Mathematics 306/326

- Sometimes **apothem** is used instead of **slant height**.
- Remember that the circumference of a cone and that of a cylinder correspond to the circumference of a circle $(C_b = 2 \pi r)$ or $(C_b = \pi d)$.
- Remember that the area of the base of a cone and that of a cylinder correspond to the area of a disk $(A_b = \pi r^2)$.
- Remember that the diameter of a circle is double its radius (d = 2r).
- You need to memorise the following formulas to calculate the area of different polygons:

Triangle:
$$A = \frac{b * h}{2}$$

Rectangle:
$$A = b * h$$
 (or $l * w$)

Parallelogram:
$$A = b * h$$

Rhombus:
$$A = \frac{D * d}{2}$$

Trapezoid:
$$A = \underline{(B+b) * h}$$

Regular polygon:
$$A = (perimeter of base) * (apothem)$$

$$A = \frac{P * a}{2}$$