Solids	Lateral Area	Total Area	Volume
Cube	$\mathrm{A}_{\text {LAT }}=4 \mathrm{~s}^{2}$	$\mathrm{A}_{\text {TOT }}=6 \mathrm{~S}^{2}$	$\mathrm{V}=\mathrm{s}^{3}$
Cylinder	$\begin{gathered} \mathrm{A}_{\mathrm{LAT}}=(\text { circumference of base }) * \text { (height) } \\ \mathrm{A}_{\mathrm{LAT}}=\mathrm{C}_{\mathrm{b}} * \mathrm{~h} \\ \mathbf{A}_{\mathrm{LAT}}=\mathbf{2} \boldsymbol{\pi} \mathbf{r} \mathbf{h} \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{TOT}}=\mathrm{A}_{\mathrm{LAT}}+2 \mathrm{~A}_{\mathrm{b}} \\ \mathbf{A}_{\text {TOT }}=\mathbf{2} \boldsymbol{\pi} \mathbf{r} \mathbf{h}+\mathbf{2} \boldsymbol{\pi} \mathbf{r}^{\mathbf{2}} \end{gathered}$	$\begin{gathered} \mathrm{V}=(\text { area of base }) * \text { (height }) \\ \mathrm{V}=\mathrm{A}_{\mathrm{b}} * \mathrm{~h} \\ \mathrm{~V}=\pi \mathbf{r}^{2} \mathbf{h} \end{gathered}$
Prism	$\begin{gathered} \mathrm{A}_{\mathrm{LAT}}=(\text { perimeter of base }) *(\text { height }) \\ \mathbf{A}_{\mathbf{L A T}}=\mathbf{P}_{\mathbf{b}} * \mathbf{h} \end{gathered}$	$\mathrm{A}_{\text {TOT }}=\mathrm{A}_{\text {LAT }}+2 \mathrm{~A}_{\text {b }}$	$\begin{gathered} \mathrm{V}=(\text { area of base }) * \text { (height }) \\ \mathbf{V}=\mathbf{A}_{\mathbf{b}} * \mathbf{h} \end{gathered}$
Cone	$\begin{gathered} \mathrm{A}_{\mathrm{LAT}}=\frac{(\text { circumference of base }) *(\text { slant height })}{2} \\ \mathrm{~A}_{\mathrm{LAT}}=\underline{\mathrm{C}_{\underline{b}}} \frac{}{2} * \mathrm{~s} \\ \mathrm{~A}_{\mathrm{LAT}}=\pi \mathbf{r ~ s} \end{gathered}$	$\begin{gathered} \mathrm{A}_{\text {TOT }}=\mathrm{A}_{\mathrm{b}}+\mathrm{A}_{\mathrm{LAT}} \\ \mathbf{A}_{\text {TOT }}=\pi \mathbf{r}^{2}+\pi \mathbf{r} \mathbf{s} \end{gathered}$	$\begin{gathered} V=(\text { area of base) } * \text { (height) } \\ 3 \\ V=\underline{A_{b}} \underline{3} \cdot \mathbf{h} \\ V=\frac{\pi \mathbf{r}^{2} \mathbf{h}}{3} \end{gathered}$
Pyramid	$\begin{gathered} \mathrm{A}_{\mathrm{LAT}}=\frac{(\text { perimeter of base }) *(\text { slant height })}{2} \\ \mathbf{A}_{\mathrm{LAT}}=\underline{\mathbf{P}_{\mathrm{b}}} \underline{2} * \mathbf{s} \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\text {TOT }}=\mathrm{A}_{\mathrm{b}}+\mathrm{A}_{\mathrm{LAT}} \\ & \mathbf{A}_{\text {TOT }}=\mathbf{A}_{\mathrm{b}}+\underline{\mathbf{P}_{\mathrm{b}}} \frac{* \mathbf{s}}{2} \end{aligned}$	$\begin{gathered} \mathrm{V}=\frac{(\text { area of base }) *(\text { height })}{3} \\ \mathbf{V}=\underline{\mathbf{A}_{b}} \underline{\underline{3}} \mathbf{3} \end{gathered}$
Sphere	$\mathrm{A}_{\text {LAT }}=\mathrm{A}_{\text {TOT }}=4 \pi \mathrm{r}^{\mathbf{2}}$	$\mathrm{A}_{\text {LAT }}=\mathrm{A}_{\text {TOT }}=4 \pi \mathrm{r}^{2}$	$V=\frac{4 \pi r^{3}}{3}$

- Sometimes apothem is used instead of slant height.
- Remember that the circumference of a cone and that of a cylinder correspond to the circumference of a circle $\left(\mathrm{C}_{\mathrm{b}}=2 \pi \mathrm{r}\right)$ or $\left(\mathrm{C}_{\mathrm{b}}=\pi \mathrm{d}\right)$.
- Remember that the area of the base of a cone and that of a cylinder correspond to the area of a disk $\left(A_{b}=\pi r^{2}\right)$.
- Remember that the diameter of a circle is double its radius $(\mathrm{d}=2 \mathrm{r})$.
- You need to memorise the following formulas to calculate the area of different polygons:

Triangle:	$\mathrm{A}=\frac{\mathrm{b} * \mathrm{~h}}{2}$
Rectangle:	$\mathrm{A}=\mathrm{b} * \mathrm{~h} \quad$ (or $1 * \mathrm{w})$
Parallelogram:	$\mathrm{A}=\mathrm{b} * \mathrm{~h}$
Rhombus:	$\mathrm{A}=\frac{\mathrm{D} * \mathrm{~d}}{2}$
Trapezoid:	$\mathrm{A}=\frac{(\mathrm{B}+\mathrm{b}) * \mathrm{~h}}{2}$
Regular polygon:	$\mathrm{A}=\frac{(\text { perimeter of base }) * \text { (apothem) }}{2}$
	$\mathrm{~A}=\frac{\mathrm{P} * \mathrm{a}}{2}$

