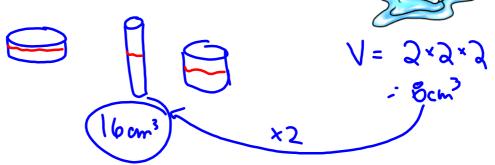

Warmup: solve for x

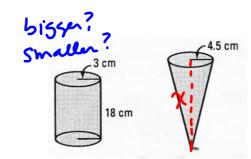

b)
$$42\pi = 5\pi \cdot x^{2}$$

131.88 $\frac{1}{15.7}$
15.7

8.4 $\frac{1}{15.7}$

An ice cube measures 2cm by 2cm by 2cm. It melts in a small cylindrical container, and when it is completely liquid, the cylinder is half-full.

What is the volume of the cylindrical container?


MISSING MEASURES OF A SOLID

Steps:

Which volume is given? Is there a volume you can calculate?

- 2. Write out the formula for the known volume.
- 3. Fill in the formula, including the volume. Call your unknown "x".
- 4. Work backwards to find the missing measure "x".

Ex. The cylinder and cone have the same volume. What is the height of the cone?

$$V = \pi r^2 \cdot h$$

= 3.14 · 3° · 18
= 508.68 cm³

2. Formula for volume of cone:

$$\Lambda = \overline{\mu \cdot L_5 \cdot P}$$

3.
$$508.68 = 3.14.4.5^{2} \times \frac{3.14.4.5^{2}}{3} = 21.195$$

4.
$$\frac{508.68}{21.195} = 21.195 \cdot \chi$$

$$24 = x$$
 The height of the cone is 24cm

If the volume of a sphere is 36TT cm³, what is its radius?

$$3. V = \frac{4\pi r^3}{3}$$

3.
$$36\pi = \frac{4\pi r^3}{3} = 4.19$$

4.
$$\frac{113.04}{4.19} = \frac{4.19 \cdot x^3}{4.19}$$

$$\frac{3}{3} = \chi$$

$$\frac{3}{3} = \chi$$

$$\sqrt[3]{27} = 3$$

WB p. 207

21. Three tennis balls are placed in a cylindrical can. If each ball has a volume of 36π cm³, what is the volume of the cylindrical can?

(The tennis balls fit exactly in the cylindrical can)

WB p. 207-208

A prism has a volume of 70 cm³. If the length of the prism is 7 cm and its height is 5 cm, wh is the prism's total area?

32, 34