PARALLEL & PERPENDICULAR LINES

Parallel Lines

The <u>slope</u> is the value a in the <u>equation of a line</u>:

$$y = ax + b$$

How do we know when two lines are **parallel**?

(what do you notice from the picture?)

Example:

Find the equation of the line that is:

- parallel to y = 2x + 1
- and passes though the point (5,4)

Perpendicular Lines

Two lines are Perpendicular when they meet at a right angle (90°).

To find a perpendicular slope

When one line has a slope of , a perpendicular line has a slope of

• In other words the **negative** reciprocal

Example:

Find the equation of the line that is

- perpendicular to y = -4x + 10
- and passes though the point (7,2)

Summary

- parallel lines: **same** slope
- perpendicular lines: **negative reciprocal** slope (-1/m)

A: $y = 2x + 3$ B: $y = 2x - 5$ C: $y = -2x + 3$	
Which lines are parallel?	
A A and B	B A and C
C B and C	D They are all parallel

What is the equation of the line:

- * perpendicular to the line $y = \frac{1}{2}x 7$ and
- * passing through the point (3, -4)?

A
$$y = -2x + 2$$

$$\mathbf{B} \quad \mathbf{y} = 2\mathbf{x} - 10$$

C
$$y = \frac{1}{2}x - 5\frac{1}{2}$$

D
$$y = -2x - 5$$

What is the equation of the line:

- * parallel to the line $y = -\frac{1}{4}x + 5$ and
- * passing through the point (2, -1)?

A
$$y = -\frac{1}{4}x - \frac{1}{2}$$

B
$$y = -\frac{1}{4}x - \frac{1}{2}$$

C
$$y = \frac{1}{4}x - \frac{1}{2}$$

D
$$y = 4x - 9$$